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1. Motivation and Concept

This document reaches out for students, which are in an early phase of a biomedical engineer-
ing, medical physics, or neuroscience course. It aims to teach basic insight into the genesis of
bioelectric signals.

Neuropotentials are in widespread diagnostic use. While being generated by cellular electric
activity, clinical settings access signals by macroscopic electrodes, which are mostly located on
the body surface. Figure 1 illustrates significant changes in signal properties when moving from
a microscopic level to a macroscopic level. A vast body of basic literature exists describing the
genesis of a cellular action potentials which reflects activity across the membrane of a single
cell (see, e.g., description of the Hodgkin-Huxley model in [1]). However, macroscopic (body
surface) electrodes access activity from a large plurality of cells. This activity gets reflected
by potential gradients in the extracellular space being accessible by macroscopic electrodes.
Notably, on it’s way from the cell-membrane to the electrode the signal undergoes remark-
able changes in morphology, amplitude and duration. The biophysical effects underlying these
diagnostically important signal properties appear being poorly investigated in basic literature.

Figure 1: Comparison of a membrane action potential (left, simulated data from [2]) with a sen-
sory compound action potential (CAP) recorded by a body surface electrode (right,
experimental data). Calibration pulses indicate scales. Notably, body surface po-
tential amplitude is four orders of magnitude smaller as compared to the membrane
potential. Width is increased by about an order of magnitude on the body surface.
Following clinical standards negativity is plotted upwards. Thus, also signal mor-
phology appears significantly altered displaying a dominant negativity and a smaller
initial positive deflection. Visible background noise is superimposed on the recordings
of only a few µV amplitude.

The potential lack of basic literature on the genesis of macroscopic neuropotentials, might
be explained by the fact that computation of extracellular potentials in a volume conductor
(i.e., a body of a human or an animal) requires the solution of a three dimensional boundary
value problem in a complex anatomy. The solution for the potential-field is often obtained us-
ing software (i.e., numerical methods like the finite element method). However, such software
tools behave like a kind of “black-box” hampering the straight forward perception of relevant
biophysical effects.
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This tutorial aims for overcoming these limitations by investigating an example which requires
only closed dipole-formulas for field computation. Thus, the phenomena underlying the genesis
of macroscopic biosignals can be expressed by – hopefully – readable formulas. Sensory com-
pound action potentials (CAPs) are chosen as an example, as the orientation of nerve fibers
being (essentially) parallel to the skin, eases the development of dipole models.

This tutorial is organized as follows: it aims to provide a structured treatment, such that
readers can follow signal genesis it in a step-by-step fashion. For those who want to dig deeper
additional information is provided in footnotes and Appendices.

2. Sensory CAP Model – Time Domain

The model described in this tutorial is a simplified version of a half-space model described in
[2]. The scope is to provide a model that explains signal morphology, width, and allows for
estimating typical amplitudes.

2.1. Background

A peripheral nerve is a longitudinal neural structure guiding electrical pulses in the body. Sen-
sory nerve fibers guide pulses from peripheral receptors towards the brain (afferent conduction;
e.g., the sensation of touching an object). When clinically investigating the function of sensory
fibers, a peripheral nerve may be electrically stimulated in a distal location. The response to
this stimulation is reflected by a sensory CAP and measured in a more proximal location. An
example is shown in Figure 2. The time required for conducting the pulse from the stimulation
site to the recording site (in combination with the physical distance of the two sites) allows
for computing nerve conduction velocity – a diagnostically relevant parameter. Normal nerve
conduction velocity in humans (and mammalians) is in the order of 45 m s−1 to 75 m s−1, thus,
allowing to transmit pulses across the body within a few hundreds of a second 1.

Figure 2: Concept for the measurement of sensory CAPs for the median nerve (i.e., a peripheral
nerve). The nerve is stimulated by a cathodic electrode (blue) at the wrist. The CAP
can be picked up by an electrode at the cubital fossa (elbow bend) and/or at erb’s
point (crossing of the nerve with the clavicle). At these two locations the nerve passes
relatively close to the body surface.

175 m s−1 correspond to 270 km h−1, which is the speed of a race car.
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Motoric peripheral nerve fibers guide pulses from the central nervous system to the muscles
(motoric function). When stimulating peripheral nerves the motoric responses can be captured
by electrodes placed close to the distal muscles. These motoric CAPs are dominated by muscular
activity. Therefore, modeling of motoric CAPs requires dedicated models which are not (yet)
included in this tutorial.

2.2. Half-Space Model - Overview

Peripheral nerves are composed from long, narrow parallel filaments named axons. An axon
is that portion of each single neuron (i.e., single nerve cell) which transmits electric pulses over
a long distance. In humans, axons of peripheral neurons can extend over a length of up to one
meter while their thickness is only in the order of roughly 10µm. The intracellular space of each
axon is surrounded by a membrane of cylindrical shape which controls exchange of ions between
the intracellular and extracellular spaces. Below, some important membrane phenomena are
briefly reviewed with the scope to model the most important phenomena for computation of
body surface potentials. A more complete treatment of membrane ionic current models can be
found in literature (e.g., [1]).

A longitudinal peripheral nerve may be modeled by an elongated cylindrical structure in a
conducting half-space (Figure 3 a). The nerve contains a plurality (some hundred) of axons.
The dashed line in the Figure represents an axon at the center of the nerve. This center is
located at a depth s. We aim for computing the CAP in an observation electrode e at the body
surface. For convenience, the origin of the coordinate system was located at the electrode.

The potential difference across the membrane (defined as intracelluar minus extracellular
potential) is called membrane potential or membrane voltage Vm. Upon activation, a neuron
responds with a typical time course (membrane action potential). Figure 3 b) depicts the
response of a mammalian sensory axon to stimulation. At rest (i.e., ahead of activation and
after an activation cycle) axons generate a constant resting potential of approximately −70 mV
(“intracellular space is negative at rest”). When activated, the membrane potential increases
quickly (about a tenth of a ms) to a maximal value which is approximately 100 mV above the
resting value. Then the potential returns to the resting potential. Thus, axonal activation is
reflected by a typical action potential containing a depolarization phase (“rise”) and repolar-
ization phase (“fall”). We may model this behavior by a linear rise and a linear fall segment.
For convenience we define time scale such that time zero is in the middle between the centers
of the two linear segments. Therefore, the centers of de- and repolarization are shifted by ∓τ
in time.

The action potential propagates along the axon (Figure 3 c) with a conduction velocity v.
Thus, we obtain Vm(x) = Vm(−vt) (see [2]). The de- and repolarization segments generate
membrane potential gradients along the axon, which in turn drive currents. Thus, a depolar-
ization dipole and a repolarization dipole of opposite orientation are generated.

2.3. Body Surface Potential of a Single Axon

Axonal Dipole Moments: The strength of the dipole (i.e., the dipole moment) is determined
by the product of the impressed dipole current ID and the length ∆L. A focal dipole model is
used for computing the potential on the body surface (i.e., in a location relatively far from the
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Figure 3: a) Model of a longitudinal neural tract in a conducting half-space (depth s, observa-
tion electrode e). b) Action potential in the time domain. The narrow dashed line
depicts simulated data from [2] which is approximated by a piece-wise linear function
(full line). c) Propagation of an action potential along an axon translates the activa-
tion cycle in the time domain into a spatial source pattern. This source pattern can
modeled by two dipoles of opposite orientation reflecting de- and repolarization. d)
Within an axon the potential gradient −∆Vm/∆L drives an impressed current ID in a
segment of length ∆L (dipole source.)

dipole [1]) 2 . The product of the impressed current ID and the length ∆L defines the dipole
moment pa. Here, ID is obtained from the product of the membrane potential gradient ∆Vm/∆L

with the intracellular conductivtiy σ and the axonal cross section Aa. We obtain therefore

pa = σ∆VmAa. (1)

Importantly, ∆L gets cancelled in the formula and the dipole moment is, thus, independend
of ∆L. Therefore, the de- and repolarisation dipoles have exactly the same magnitude (but
opposite orientation) as all remaining parameters are identical. Table 1 lists the parameters
used in this tutorial.

Thus, we obtain two dipoles of exactly same strength but opposite orientation. This is called
a quadrupole pattern (plus, minus, minus, plus). The CAP is composed by the sum of hundreds
or thousands of potentials generated by the individual axons of a nerve. Thus, we will first
consider an individual axon potential and will then superimpose potentials. We first consider
the potential generated by a single propagating dipole.

Moving Dipole Potential: A dipole traveling along an axon can be described as a moving
source point x. Thus, it is of advantage to provide formulas such, that the potential at the

2In Neuroscience the term far field is in use with two slightly different meanings. a) For field computation
problems far field models allow for simplification of formulas (as in this tutorial). b) In clinical investigations
far field potentials are potentials, which are generated by a source being relatively distant from the site of
the investigation. For example, an electrode on a shoulder may pick up a brainstem potential.
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Table 1: Parameters for the Half-Space Model.

parameter symbol value
axon
membrane potential amplitude ∆Vm 100 mV
axonal crosssection Aa 100 µm2

intracellular conductivity σ 2.0 S m−1

conduction velocity v 60 m s−1

action potential time constant τ 0.13 ms
nerve and volume conductor
number of axons N 600
bulk conductivity κ 0.2 S m−1

depth s 12 mm
Appendix A reviews the chosen values.

electrode becomes a function of x.

ϕp(x) = − pa
2πκ

x

(x2 + s2)
3
2

. (2)

Here, s is the depth of the neural pathway in the tissue and κ is an average passive con-
ductivity of the tissue surrounding the axon. The open access supplement of [2] provides a
derivation of eq. (2). The minus on the right hand side reflects that a variable source point is
considered while the field point is fixed (electrode at the origin). For a dipole propagating with
a conduction velocity v along the axon, the actual source point is x = vt (thus, at t = 0 the
dipole passes underneath the observation electrode). We obtain the dipole potential ϕp(t) as a
function of time

ϕp(t) = − pa
2πκ

vt

[v2t2 + s2]
3
2

. (3)

The top left panel in Figure 4 depicts ϕp(t) obtained using the parameters defined in Table
1.

Axonal Action Potential: The potential of two dipoles of opposite polarity and temporal
displacement +τ and −τ is obtained from

ϕa(t) = ϕp(t− τ)− ϕp(t+ τ) = [δ(t− τ)− δ(t+ τ)] ∗ ϕp(t). (4)

Notably, the time shift of two dipoles of opposite amplitude can be formally expressed by
the convolution of two Dirac pulses of opposite sign with ϕp(t). In chapter 2.4 we shall take
advantage of this observation. Substituting now eq. (3) into (4) we obtain for the axon potential

ϕa(t) = − pa
2πκ

{
v(t+ τ)

[v2(t+ τ)2 + s2]
3
2

− v(t− τ)

[v2(t− τ)2 + s2]
3
2

}
. (5)

The right panel in Figure 4 depicts the axonal potential obtained using the parameters defined
in 1. The axonal body surface potential displays a tri-phasic morphology reflecting the under-
lying quadrupole pattern. The dominating negative peak corresponds to the two negative poles
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Figure 4: Top Left: Moving dipole potential. Right: The axon potential (blue) is a superpo-
sition of the potentials of the depolarization (cyan) and repolarization (magenta)
dipoles. The triphasic morphology of the axon potential reflects the underlying
quadrupole source pattern( +−−+). Bottom Left: Peak amplitude as a function of
depth. The vertical dashed line marks s = 12 mm . All parameters were taken from
Table 1 unless otherwise noted.

at the center of the distributed source. The adjacent small positive deflections are generated
by the positive poles at the leading and trailing ends of propagating membrane action potential.

The amplitude of a body surface axon potential is in the order of 100 nV and thus not di-
rectly measurable 3.

For the typical depth of a nerve being in the order of several mm or some cm the peak amplitude
ϕ̂a is obtained when setting t = 0 (i.e., at the potential minimum). Substituting eq. (1) into
(5) we obtain

ϕ̂a = ∆Vm
σ

κ

Aavτ

π[v2τ 2 + s2]
3
2

. (6)

The small axonal body surface potentials are caused by the small axonal cross section Aa
which is several orders of magnitude smaller than s2. The bottom left panel in Figure 4 plots
ϕ̂a as a function of s with the parameter v. Noteably, the amplitude decreases quickly with
increasing s. As can be taken from eq. (6) for large s peak amplitude is inversly propotional
to the third power of s (quadrupole behavior). Thus, eq. (6) supports the choice of clinical
recording sites as indicated in Figure 2.

3Modern biopotential amplifiers provide resolutions of a few tens of nV at noise levels being in the same order
of magnitude. However, the major limiting factor of measuring cellular biopotentials at the body surface is
simply the superposition of uncorrelated activity of many cells.
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Some Observations: The results obtained in this tutorial are in good qualitative agreement
with other studies using more sophisticated modeling ([3] finite element model, [2] membrane
potential model). Importantly, all models predict negativity of tissue as a marker for local
activation. These model predictions are also in agreement with experimental studies using ex-
tracellular micro-electrodes for assessing activity of single axons [4]. These observation does not
only apply to neural tissue. Also cardiac muscle tissue becomes negative upon local activation
[5]. 4.

2.4. Compound Action Potential

The sensory CAP generated by a large plurality of axons can be obtained by a superposition of
all axon signals. However, as illustrated in Figure 5 a) activation in individual axons displays
some dispersion. When stimulating a peripheral nerve, a volley is triggered (i.e., a plurality of
activation pulses in individual axons). Within this volley, activity is somewhat asynchronous
due to variations in stimulation threshold and conduction velocity of individual fibers. In
section 2.3 we observed that time shifts can be modeled by a convolution with time-shifted
Dirac pulses. Therefore, superposition of axonal potentials may be modeled by summation of
many axon potentials dispersed in time. However, for considering the contributions of some
hundred axons it is convenient, to define a probability density function D(t) reflecting dispersion
of activation (see Figure 5 b) and [2]). The sensory CAP ϕe(t) generated by N axons is then
obtained by a convolution of the axon potential ϕa(t) with the dispersion function D(t)

ϕe(t) = ND(t) ∗ ϕa(t). (7)

Here, D(t) is defined such, that the area under the curve equals one. The number of axons
is considered by multiplication of N .

Probability density distributions may be approximated by histograms (interval width ∆T ).
We apply the following notation in this tutorial. We chose an odd number of intervals H and
center the histogram at t = 0. We then obtain κ = (H−1)/2 indices for each negative and positive
time shifts. The local densities d(h) must fulfill the following side constrain (area under the
curve equals one)

∆T
κ∑

h=−κ

d(h) = 1. (8)

Figure 5 b) depicts the example distribution which was chosen in this tutorial. A numerical
software package was used for solving equations at a sampling interval of 10 µs. Figure 5 c)
depicts the simulated CAP. It displayed a peak amplitude of 2.4 µV. Notably, this value cor-
responds to roughly the 30-fold of the axonal peal amplitude 85 nV, while the number of axon
in the simulation was set to N = 600. This remarkable loss of CAP amplitude was due to the
asynchronicity of axonal activity (dispersion). As we can observe from Figures 5 b) and c) the
convolution of ϕa(t) with D(t) may be interpreted as a smearing of axon activity on on the
body source. The distribution D(t) remarkably broadens the CAP (superposition of cellular
activity) as compared to the axon potential ϕa(t) and reduces the increase of amplitude by
superposition of N signals.

4Cathode stimulation is a frequently used approach. While activated cells generate negativity in their sur-
rounding, negative electrodes activate nearby neurons or myocytes (see also Figure 2).
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Figure 5: a) Schematic representation of four axons in a neural tract displaying a dispersion of
activation. b) Example for a distribution of dispersion D(t) (gray shaded histogram
containing H = 9 intervals). On top of this subpanel the used example values are
listed. Following the definitions made in eq. (8) the sum of the values inside the square
bracket yields one. ∆T was set to 0.3 ms. For comparison, the axon potential ϕa(t) is
superimposed in the figure at the same time scale (negativity is plotted upwards). c)
A simulated CAP obtained by numerical convolution of the two functions (δ(t) and
ϕa(t)) in panel b). Following clinical standards, negativity is plotted upwards (see
also text).

The simulated CAP also displays some ripple in the waveform. This ripple was due to the
steps in the distribution function D(t). This may be considered as a modeling artifact caused
by approximating dispersion by a relatively small number of intervals H. There are multiple
options for reducing this artifact. Firstly, the number of intervals H may be increased for
decreasing the size of the steps. Secondly, instead of a histogram, a continuous distribution
function may be used. Appendix B investigates this second option in more detail.

2.5. Comparison with Measured Data - Erb’s Point

For performing an initial validation of the considered CAP-model a comparison with data
recorded at erb’s point (defined in Figure 2) was performed . In four healthy volunteers right
median nerve stimulation was performed and CAPs were recorded at the right erb’s point.
Following a clinical standard procedure the reference electrode was placed at the left erb’s point

October 28, 2024 9 A Tutorial



© Gerald Fischer – Euro-HSP Modeling CAPs v1.0.b

and the CAP was obtained by trial averaging of 600 bandpass filtered sweeps 5. The bandpass
corner frequencies were set to 75 Hz to 750 Hz. This choice will be further investigated in
Section 3.

Figure 6: Left) Simulated CAP (magenta) and erb-potentials obtained in four normal volunteers
(blue traces). The peak of the simulated CAP was located at 9 ms corresponding to
the average latency in healthy subjects (N9-peak). In the recorded data a normal
variation in amplitude and latency is observable. Here, variations in latency were
due to body size (155 to 175 cm) and to a smaller degree due to age (25 to 45 y).
For all traces, the width of the negative peak is in the order of roughly 2 ms. In
all four subjects the signal morphology is asymmetric. The positivity ahead of the
dominating negative peak is more pronounced than the trailing positivity. Right)
Schematic of the asymmetry of the nerve anatomy near the erb electrode. Due to a
curvature in the neural pathway the depolarization dipole is orientated towards the
electrode when approaching the recording side generating a larger initial positivity.

The simulated CAP resembles several important features of the recorded CAPs. Amplitude
and width are within the experimentally observed range. Furthermore, also the measured signal
morphology is dominated by a negative peak with two adjacent smaller positivities. However, in
the recorded data the initial positivity is always of larger amplitude. The right panel of Figure

5This electrode configuration allows for assessment of conduction velocity of right and left median nerve. For
each stimulation site the ipsi-lateral erb-electrode is used as the the active electrode (i.e., for picking up the
response to stimulation), while the contra-lateral electrode serves as a reference (potential is almost zero
in the far field). Some hundred repetitions are required for extracting the CAP. Notably, the raw signal
contains much larger background signals (in particular cardiac signals, i.e., ECGs). Filtering is applied for
further improving signal-to-noise ratio.
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6 explains the asymmetry of the recorded data by an asymmetry of the underlying geometry.
This asymmetry is not considered by the model applied in this tutorial.

Similar traces are obtained we recording median nerve sensory CAPs in the cubital fossa (elbow
bend, see [6]) or tibial nerve sensory CAPs in the popliteal fossa (knee bend, see [7]). However,
when recording at the extremities the placement of the reference electrode has more impact on
the signal morphology, due to the relatively small diameter of essentially cylindrical anatomical
structures.

3. Sensory CAP Model – Frequency Domain

The bandpass filtered data in Figure 6 suggest, that sensory CAPs are mainly composed by
frequency components in the order of some hundred Hz. For extending our analysis, we insert
eq. (4) into eq. (7) and obtain

ϕe(t) = Nδ(t) ∗ ϕp(t) ∗ [δ(−τ)− δ(−τ)]. (9)

This time domain CAP representation involves two convolutions. Convolutions in the time
domain correspond to multiplications in the frequency domain. This eases frequency domain
analysis, since the model can be split into independent blocks. For each block time continuous
Fourier transform can be applied independently. The spectrum of the entire system is then
obtained by multiplying the spectral representations of each block. Thus, the frequency domain
analysis contains tree blocks:

� The source term on cellular level (single axon) is modeled by two Dirac pulses representing
de- and repolarization.

� The potential ϕp(t) related to propagation of a dipole along a fiber composes a second
block.

� The dispersion of activity δ(t) is modeled by a third block.

We restrict our investigations to a frequency range below 1 kHz. As it is shown in [1] the
quasi-stationary dipole model introduced in section 2.3 applies to that low frequency band. At
some kHz and above, cell membranes behave like capacitors short-cutting the signal.

3.1. Source Term

The Fourier transform of two Dirac pulses of opposite sign can be denoted by

F {δ(−τ)− δ(−τ)} = e−jωτ − e−jωτ = −2j sin(ωτ). (10)

Thus, the magnitude of the spectral source term can be approximated by a sine. For τ =
0.13 ms (see Table 1) its first maximum is obtained at 1.9 kHz. Thus, in the frequency range of
interest the source block behaves like a high-pass structure. Figure 7 illustrates this observation
6.
6Due to the relatively short membrane potential duration being in the order of some tenth of ms, the coarse

approximation of the biphasic current by two Dirac pulses provides sufficient accuracy below 1 kHz. A more
detailed model of a peripheral mammalian sensory fiber is investigated in [2]. Figure 4 in this open access
paper depicts the results. There is a remarkable agreement with the simplified treatment in this tutorial.
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Figure 7: a) A piece-wise linear model of the membrane potential Vm(t) and the impressed
current ID(t) related to the first temporal derivative of Vm. The current displays
a biphasic pattern. Importantly, the areas under each half wave (reddish style) are
identical. Therefore, they are approximated by two Dirac pulses of identical amplitude
but opposite sign. b) The spectrum of the biphasic wave displays a peak well above
1 kHz. In the relevant frequency range the source term displays high-pass properties.

3.2. Propagation Term

The propagation term is defined in eq. (3). However, despite its closed form the analytical
computation of its Fourier transform it is not straight forward but significant spectral proper-
ties can be observed by analysising formulas. Since the propagation term is an odd function
(see top left panel of Figure 4), its DC-content equals zero. Furthermore, since it is a contin-
uous finite valued function, its spectral components approach zero when increasing frequency
towards infinity. Therefore, dipole propagation acts like a band-pass.

Furthermore, a numerical investigation of the spectrum can be performed. At the high sam-
pling rate of 100 kHz accurate spectral estimates are obtained up to serveral kHz. Figure 8
depicts the results.

Figure 8: Frequency spectrum of the signal generated by a propagating dipole (bold line). For
the parameters defined in Table 1 a peak frequency of approximately 500 Hz is ob-
tained. The dash line depicts the spectrum of an axonal potential ϕa(t). It is the
product of the bold line with the high-pass structure in Figure 7. Here, the maximum
is shifted up to about 1 kHz.

October 28, 2024 12 A Tutorial



© Gerald Fischer – Euro-HSP Modeling CAPs v1.0.b

3.3. Dispersion Term

Figure 9 depicts the concept used for frequency domain analysis of the distribution function
D(t) as defined in eq. (8). The histogram D(t) may be interpreted as a convolution of a series
of Dirac pulses fδ(t)containing the amplitudes of each bar in the histogram and rectangular
pulse fr(t) of width ∆T and amplitude one

D(t) =
1

∆T
fδ(t) ∗ fr(t) =

1

∆T

κ∑
h=−κ

d(h)δ(t+ h∆T ) ∗ fr(t) (11)

Figure 9: A histogram D(t) ( left) can be interpreted as the convolution of a series of Dirac
pulses fδ(t) sampling the interval amplitudes (middle) with a rectangular pulse fr(t)
(right).

In this tutorial we first consider the special case that the distribution D(t) was even (i.e.,
d(−h) = d(h)). We then obtain for the Fourier transform of fδ(t)

F {fδ(t)} = d(0) + 2
κ∑
h=1

d(h) cos(hω∆T ) ... for d(−h) = d(h). (12)

Thus, the series of Dirac pulses displays a periodic spectrum7. Due to the even distributions
it contains only cosine terms. At ω = 0 all cosine terms yield one. In statistical distributions
the parameters d(h) are always positive numbers and their sum yields one. Thus, we obtain a
spectral maximum at DC and the value of this maximum equals one. Due to the periodicity of
the spectrum there are multiple maxima which all equal one.

The Fourier transform of the rectangular pulse fr(t) is well described in basic literature [8]. It
is represented by a sinc-function

F {fr(t)} =

√
2

π

sin(ω∆T )

ω
. (13)

Notably, the sinc-function contains a single global maximum at ω = 0. Due to the time
domain convolution in eq. (11) its Fourier transform is obtained by multiplying eq.s (12) and
(13)

F {D(t)} = F {fδ(t)}F {fr(t)} . (14)

Figure 10 shows the spectrum obtained by eq. (15) for the parameters chosen in this study.
At ω = 0 the maxima in F {fδ(t)} and F {fr(t)} coincide. At non-zero frequencies the

maxima in the periodic spectrum F {fδ(t)} coincide with the zero-crossings in the sinc-function

7We may interpret the series of Dirac pulses as time discrete sampling of the histogram. Thus, following
Shannon’s sampling theorem a periodic spectrum is obtained,
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Figure 10: The series of Dirac pulses fδ(t) yields a periodic spectrum (blue trace). The spectrum
of the rectangular pulse fr(t) is a sinc-function (green dashed trace). Due to the
convolution depicted in Figure 9 the spectrum of the distribution function is the
product of its two components. The amplitude of the spectra was normalized to one
for enabling comparison. Parameters were selected identical as for the time domain
investigation in Figure 5.

in F {fr(t)}. Therefore, we obtain a single global maxium in the spectrum of the distrbution
function F {D(t)}. Furthermore, with increasing ω the envelope of the sinc-function decreases
by 1/ω. Thus, the spectrum of F {D(t)} corresponds to a low-pass. In the stop-band the cosine
and sine terms induce some ripple in the spectrum. The 1/ω damps this residual ripple with
increasing frequency. Analogues as for the time domain (see Figure 5) this ripple is due to the
steps in the histogram.

Harmonic Functions: In this section we restricted our analysis to modeling statistic distri-
butions by even histograms. However, there is a more general body of theory available which
allows us to generalize the observations made in this section to both asymmetric and also
smooth statistical distributions8. Statistic distributions have two remarkable properties which
allow for generalization. They contain only positive numbers and the area under the curve
always equals one. The term harmonic functions refers to Fourier analysis of functions fulfilling
these two criteria (mind the cosine and sine terms in our analysis). The Fourier transform
of statistic distributions always displays the global maximum at ω = 0 and always converges
towards zero when ω approaches infinity. Thus, temporal dispersion always acts as a low-
pass filter. The supplement of [2] provides an open source document containing additional
information on harmonic functions.

8If we would apply a bell shaped Gaussian distribution instead of the even histogram, we would obtain a bell
shaped spectral distribution with the maximum at ω = 0. Notably, the result for F {D(t)} in Figure 10 can
be interpreted as an approximation of a bell-curve.
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3.4. CAP Frequency Spectrum

Applying Fourier transform to eq. (9) the spectrum of a sensory CAP is obtained by the
product of the three components described above

F {ϕe(t)} = NF {D(t)}F {ϕe(t)}F
{
δ(t− τ)− δ(t+ τ)

}
. (15)

Here, the source term F
{
δ(t− τ)− δ(t+ τ)

}
corresponds to a high-pass component and

the distribution term F {D(t)} corresponds to a low-pass component. Thus, their product
is a band-pass. Also the propagation term F {ϕe(t)} relates to a band-pass. Therefore, the
dominating spectral components of a sensory CAP are contained within a spectral band. Figure
11 depicts the frequency spectrum obtained for the sensory CAP in Figure 5.

Figure 11: Normalized magnitude of the Frequency spectrum for the sensory CAP in 5. The
dashed lines are the corner frequencies which were applied to the experimental data
in Figure 6 (depicted for comparison; 75 Hz and 750 Hz). Also the dominating
spectral components of the simulated CAP are within this band.

Again, some ripple occurs at high frequencies due to the application of a step-like distribu-
tion function. In Appendix B it is shown that a continuous distribution function significantly
reduces these spurious oscillations for both the time and the frequency domain.

Experimental validation of the sensory CAPs spectrum is challenging since real world data
displays a superposition of the target signal with background signals (for example mypoten-
tials) of high amplitude. Appendix C provides a spectral analysis of an Erb potential. Similar as
for the simulated data peaj frequency was found near 200 Hz and bandwidth was some 100 Hz.

4. Observations and Interpretations

4.1. Model Definition

The art of modeling: “Every model is a simplification of reality and the development de-
scribed here is no exception.” This first sentence quoted from the discussion in Blanc et al. [9]
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applies to any modeling approach. Models are per definition simplified or abstract reflections
of reality. There is nothing bad in this phrase – indeed, it teaches how to use models. Any
phenomenon we observe in the true world is influenced by a large plurality of effects. Human
perception in general uses abstraction. We always work with simplified pictures of what is going
on around us. Modeling is the art of making a conscious approach of simplification: consider
an abstract picture and understand the most important effects; refine the picture if needed in a
step-like fashion by considering more and more single factors contributing to the reality around
us.

Since models are always approximations and never perfect copies of reality, it is mandatory
to define a scope for each model. For this tutorial it may be defined as follows:

Scope: Describe the genesis of a basic neuropotential by a model which requires only a few
dipole terms in closed form. Apply this model for explaining the key properties of the signal
in the time and frequency domain in a hopefully transparent way.

Interpretation: Sensory CAPs were chosen, since they allow for meeting this scope and for ex-
plaining the remarkable changes of signal properties on their way from the cell membrane to the
body surface (Figure ??). The applied model allowed for explaining body surface potentials as
a superposition of cellular de- and repolarization, each described by dipoles. Dipole orientation
explains negativity of activated tissue. A plurality of effects contribute to explaining the low
amplitude of body surface potentials. Firstly, the cross-section of the activated intra-cellular
space (impressed currents) is small compared to the cross-sections available for passive current
return path. Therefore, potential gradients are relatively small close to the body surface. Sec-
ondly, de- and repolarization display opposite sign compensating each other in the far field.
Finally, individual cells get activated in a slightly asynchronous fashion resulting in a smearing
of signal peaks.

The model allowed for identifying three effects contributing to the spectral profile of the body
surface signal – and, thus, providing a theoretical basic for improving signal extraction by fil-
ters. Firstly, the fast de- and repolarization cycle at the cell membrane constitutes a source
containing significant high frequency components. Secondly, propagation of activation along
an axon acts like a band-pass filter in signal transmission. Finally, smearing due to dispersion
of activation acts as a low-pass filter and strongly damps the high frequency components in the
source term.

Some obvious simplifications: The choice of a half-space model which allows for application
of closed expressions hampers modeling of anatomical structures and introduces an idealized
symmetry which does not reflect real word conditions. The application of numerical field com-
putation techniques can overcome this limitations. Models may describe human anatomy and
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may consider structures of different conductivities (e.g., bones, muscles). The approximation of
the source structure by two dipoles does not allow for accurate modeling of the action potential
and detailed features like hyperpolarization are not contained in the models. A technique for
overcoming these shortcomings is presented in [2].

It is an intrinsic challenge of scientific working aiming to overcome obvious limitations. This
tutorial is intended for motivating future researchers to do so.

4.2. Uncertainty of Model Parameters

Assigning values to model parameters always involves some uncertainty. When modeling bio-
logical systems this uncertainty in general larger as for technical systems. When considering
the individual variation in Figure 6 it becomes evident that there is some individual variation
in these parameters. The following approach was made in this tutorial. Reasonable values
were assigned to the parameters based on data reported in literature. The uncertainty in con-
ductivities and axon cross section might be in the order of a few tens of percent. Uncertainty
in membrane potential amplitude might be even smaller. Notably, all parameters mentioned
in this paragraph contribute only to a scaling of the signal. Thus, they cannot get estimated
independently from the recorded data.

Reliable data for the number N of axons in a volley and their temporal dispersion is hard
to obtain. Thus this data was selected (fitted) such that the simulated signal is comparable
to the measured data in amplitude and width. The selected value of 600 axons corresponds
to a total cross section of 0.06 mm2 for the stimulated axons which appears reasonable. The
temporal dispersion in the volley is in the order of slightly more than ±10 % of the conduction
time from the stimulation site to the recording site (9 ms) on average from the wrist to erb’s
point). Also this appears being a plausible value.

5. Summary and Outlook

The half-space model provides a reasonable approximation for explaining key signal properties
of sensory CAPs. In the frequency domain, three effects contribute to the spectral profile (see
Figure 12). The biophysical properties of the pulse-conducting axons directly impact on signal
morphology and amplitude. Since axons display a higher conduction velocity and shorter action
potential duration as most other cell types, sensory CAPs contain relatively high frequencies.
Spectral amplitude peaks at some hundred Hz and significant activities occurs up to about
1 kHz9.

Other types of biopotentials like the electroenzephalogramm (EEG), and the electrocardio-
gramm (ECG) and are generated by comparable effects as described in this tutorial. However,
an obliviously broader spectrum of biophysical effects must by considered. Here, a brief outlook
is provided in the context of Figure 12.

Source: In by far the most of the cases the action potential duration is significantly longer as
compared for the axon. This generates source terms of much smaller frequency content which
contributes to spectral peaks of smaller frequency for the EEG and the ECG. In the human

9Generally, 1 kHz reflects a kind of upper bound of body surface spectral components.
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source propagation dispersion

F
{
dV
dt

}
F{φa} F{φn}

cell model

Figure 12: Overview on the frequency domain structure considered in Section 3. The source
term (impressed current) is obtained from the first derivative of the membrane action
potential (cell model). In the relevant frequency range, the source term reflects high-
pass structure. The propagation along an individual axon behaves like a band-pass
structure. Temporal dispersion of individual cells behaves like a low-pass structure.

cortex the neuron’s dendrites (action potential duration of several ms) are the dominating
structure of EEG generation while axonal signal components are expected to be much smaller
amplitude [10] . In the human heart action potential duration is in the order of a few 100 ms.
Thus distinctly separated deflections for depolarization (QRS-complex) and repolarization (T-
wave) are observed. Interestingly, within the ventricles of the human heart, cells display a
natural heterogeneity of action potential duration which essentially reverses the direction of
propagation during repolarization. Therefore, the two dominant ECG-deflections, R- and T-
wave, both display a positive sign and the ECG contains a natural DC-content [11].

Propagation: Large EEG waves like for example the α-rhythm (8 to 13 Hz) are generated by
propagation of activation across large macroscopic areas of brain tissue. Here, neurons transmit
activation to neighboring cells via synapses. This causes a slowing of conduction by more than
an order of magnitude (as compared to the axon) and involves denditric activity. Both effects
contribute to a reduction of peak frequency. In the heart myocytes transmit activation via gap
junctions. Conduction velocities are in the order of roughly 1 m s−1 and, thus, again more than
an order of magnitude smaller as for the myelinated axon. Propagation of activation fronts in
the ventricles generate the QRS-complex and, thus, the fastest deflections in the normal ECG
[1].

Dispersion: In the EEG the low-pass effect of asynchronous activation is supposed to strongly
attenuate axonal activity (short AP duration) while having much less on effect on dendritic
activity. Thus, within the classical EEG spectral bands (Δ-band to γ-band; 4 to 70 Hz, [12])
dispersion might largely mask cortical axonal activity. However, for the highest spectral peaks
measurable on the scalp (near 600 Hz; [13]) a high degree of neuronal synchronization may
occur. This gives rise to fast low amplitude oscillations of some 100 nV peak-to-peak voltage.
In the human heart significant dispersion of repolarization is observable [14]. Thus, T-waves are
of smaller amplitude and smoother shape (lower frequency) as compared to the QRS complex.
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A. Model Parameters

This section motivates the choice of parameter values used in this tutorial.

Membrane Potential Amplitude ∆Vm: This value is typically in the order of 100 mV which
somewhat below the difference of the sodium and pottassium potentials at the cell membrane. For
example the amplitude obtained from a Hodgkin-Huxley model in the textbook by Malmivuo and
Plonsey ([1], Figure 4.19) is slightly below this value while the amplitude obtained for a model of a
mammalian cell [2] is slightly above this value.

Effective Intracellular Conductivity σ: This value essentially reflects the ohmic conduction of
an aqueous saline solution. At body temperature the conductivity of a physiological saline solution is
approximately 2 S m−1 [15]. Some studies report slightly smaller values [2] since organelles inside the
cells reduce the effectively conduction cross-section.

Bulk Conductivity κ: This value reflects the ohmic conduction of tissue being a mixture of many
components. There is some obvious variability. Highest, conductivity is observed in blood (approxi-
mately 0.6 S m−1). This value is about on third of the conductivity of a physiological saline solution.
Here, the hematocrit inside the blood reduces conductivity since at low frequencies passive current
flow propagates essentially in the extracellular space only. Lowest conductivity is observed in bone
or lung tissue (contains air) and amounts to about 0.05 S m−1). Average tissue conductivity is in the
order of 0.2 S m−1) which is also a reasonable approximation for most soft tissues.

Nerve Conduction Velocity v: A typical value for myelinated nerve fibers in humans and mam-
malians is in the order of 60 m s. This value is the mean of a larger range which was investigated in
[2].

Action Potential Time Constant τ : As can be taken from Figure 3 τ is defined such that it equals
approximately one quarter of the time from activation onset to repolarization end (i.e., transition to
hyperpolarization). The simulated membrane potential in [2] this time interval is somewhat above
0.5 ms suggesting a value of τ =0.13 ms.

Number of Axons N : There is quite a large uncertainty when reviewing literature for estimates
of firing neurons. For example, Section 2.4.2.1 of the textbook by Knösche & Haueisen [10] reports
values from a few thousand up to several ten-thousand when estimating the number of active cortical
neurons generating measurable scalp potentials. This tutorial chose a value of N = 600 (about on
third of the value reported in [2]) since this choice provided a peak amplitude which was comparable
to the experimental data. The estimation of the activated cross-section within a nerve (see Section
4.2) delivered a plausible value.

Depth s: This value was based on an estimation made by clinical neurophysiologists based their
clinical experience.

B. Continuous Distribution

The rectangular steps in the histogram used in the tutorial generated spurious high frequency com-
ponents in the sensory CAP. This Appendix illustrates the attenuation of this modeling artifact by
applying a continuous statistical distribution.
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In section 3.4 the histogram D(t) was modeled as a convolution of a series of Dirac pulses fδ(t) with
a rectangular pulse fr(t) of width ∆T and amplitude one. By performing a second convolution with
a rectangular pulse f̄r(t) the step-like histogram gets converted into a continuous, piece-wise linear
distribution function D̃(t) (convolution of two rectangles generates a continuous triangular pulse).
Here, the pulse f̄r(t) was normalized such that its area yields one. We obtain

D̃(t) =
1

∆T
fδ(t) ∗ fr(t) ∗ f̄r(t) (16)

Figure 11 depicts the CAP obtained by using the continuous distribution function D̃(t). Figure 12
depicts the Fourier transform tor the CAPs obtained from both distributions.

Figure 11: Left) CAP obtained by using the continuous distribution function D̃(t). A smooth

triphasic morphology is obtained. Right) Comparison of CAP obtained from D̃(t)
(magenta) and the histogram D(t) (blue). A portion of the signal was magnified for
illustrating attenuation of oscillations by double convolution.

C. Spectral Analysis of an Erb’s Point Signal

A direct experimental validation of the CAP spectrum is challenging, since in real world recordings
the evoked sensory CAP is superimposed by much larger background activity. The top left panel in
Figure 13 shows that electrocardigraphic background activity dominates the measured raw data in
erb’s point recordings. Following clinical practice bipolar recordings were performed by placing elec-
trodes on the right and left erb’s point.The bottom right panel displays the sensory CAP extracted by
trial averaging and filtering. The deflection is of much smaller amplitude and much shorter duration
than the ECG waves in the background.

N -Interval Fourier Transform Analysis (N -FTA) allows for spectral separation of spontaneous back-
ground activity and triggered evoked signal components [12]. Spectral components are reflected by
power spectral density (PSD, in dB)10. While background activity is assessed continuously, evoked

10The computation of dB values requires the choice of a reference power level. According to the definitions
made in [12] 0 dB correspont to a reference power level of µV2 Hz−1 which is a reasonable choice for EEG
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Figure 12: Normalized DFT of the CAPs obtained from D̃(t) (magenta) and the histogram
D(t) (blue). Smoothing by double convolution strongly attenuates frequencies in
the range of some kHz.

activity must fulfill statistical acceptance criteria for ensuring that they can be reliably extracted from
the data. The right panel in Figure 13 depicts an N -FTA analysis performed for five minutes of data
(approximately 750 sweeps). Over the entire investigated frequency range (DC to 1 kHz) the back-
ground PSD clearly exceeds the evoked PSD. Evoked components are detected between about 100 Hz
and 750 Hz. For the actual sweep count, N -FTA can theoretically detect evoked components down
to 10 log1 0(750) = 29 dB below the background value. The peak of the evoked PSD is near 200 Hz
and approximately 15 dB below the background PSD. Thus, the experimentally observed spectral
distribution agrees with the theoretical prediction in Figure 11.

Notably, there is a defined segment were the evoked activity is less than 29 dB below the background.
Only within this segment evoked signal components can be extracted. For improving signal-to-noise
ratio, frequencies below, e.g., 75 Hz should be removed by a high-pass filter for excluding the high
amplitude ECG-low frequency components from the analysis. Note, that the short CAP duration
allows for distinguishing this signal from significant ECG components. For damping also the high
frequency noise floor a 750 Hz high-pass filter should be applied.

data.
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Figure 13: Top Left: A 1.4 s segment of data recorded between the right and left erb’s point in a
volunteer during right median nerve stimulation. The vertical dashed lines mark the
stimulation triggers (approximately 2.5 Hz). The stimulation artifacts were removed
from this data by template subtraction. This preprocessed data reflects an ECG (a
signal measured at the shoulders corresponds to Einthoven lead I). A small orange
inset shows the size of the CAP for comparison. Bottom Left: The CAP as obtained
by trail averaging and filtering (data for subject C in Figure 6). For both time and
amplitude significantly smaller scales are used as for the raw data. Right: Spectral
analysis by N -FTA allows for separation of spontaneous activity (background) and
evoked activity in the spectral domain (see text).
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